4,943 research outputs found

    Hawking radiation from decoherence

    Get PDF
    It is argued that the thermal nature of Hawking radiation arises solely due to decoherence. Thereby any information-loss paradox is avoided because for closed systems pure states remain pure. The discussion is performed for a massless scalar field in the background of a Schwarzschild black hole, but the arguments should hold in general. The result is also compared to and contrasted with the situation in inflationary cosmology.Comment: 6 pages, to appear in Class. Quantum Gra

    Can effects of quantum gravity be observed in the cosmic microwave background?

    Full text link
    We investigate the question whether small quantum-gravitational effects can be observed in the anisotropy spectrum of the cosmic microwave background radiation. An observation of such an effect is needed in order to discriminate between different approaches to quantum gravity. Using canonical quantum gravity with the Wheeler-DeWitt equation, we find a suppression of power at large scales. Current observations only lead to an upper bound on the energy scale of inflation, but the framework is general enough to study other situations in which such effects might indeed be seen.Comment: 5 pages, 1 figure, essay awarded first prize in the Gravity Research Foundation essay competition 201

    Singularity avoidance by collapsing shells in quantum gravity

    Get PDF
    We discuss a model describing exactly a thin spherically symmetric shell of matter with zero rest mass. We derive the reduced formulation of this system in which the variables are embeddings, their conjugate momenta, and Dirac observables. A non-perturbative quantum theory of this model is then constructed, leading to a unitary dynamics. As a consequence of unitarity, the classical singularity is fully avoided in the quantum theory.Comment: 5 pages, 1 figure, received honorable mention in the 2001 essay competititon, to appear in Int. J. Mod. Phys.

    Can the Arrow of Time be understood from Quantum Cosmology?

    Full text link
    I address the question whether the origin of the observed arrow of time can be derived from quantum cosmology. After a general discussion of entropy in cosmology and some numerical estimates, I give a brief introduction into quantum geometrodynamics and argue that this may provide a sufficient framework for studying this question. I then show that a natural boundary condition of low initial entropy can be imposed on the universal wave function. The arrow of time is then correlated with the size of the Universe and emerges from an increasing amount of decoherence due to entanglement with unobserved degrees of freedom. Remarks are also made concerning the arrow of time in multiverse pictures and scenarios motivated by dark energy.Comment: 14 pages, to appear in "The Arrow of Time", ed. by L. Mersini-Houghton and R. Vaa

    Remarks on the issue of time and complex numbers in canonical quantum gravity

    Get PDF
    We develop the idea that, as a result of the arbitrariness of the factor ordering in Wheeler-DeWitt equation, gauge phases can not, in general, being completely removed from the wave functional in quantum gravity. The latter may be conveniently described by means of a remnant complex term in WDW equation depending of the factor ordering. Taking this equation for granted we can obtain WKB complex solutions and, therefore, we should be able to derive a semiclassical time parameter for the Schroedinger equation corresponding to matter fields in a given classical curved space.Comment: Typewritten using RevTex, to appear in Phys. Rev.

    Canonical Quantization of Spherically Symmetric Dust Collapse

    Full text link
    Quantum gravity effects are likely to play a crucial role in determining the outcome of gravitational collapse during its final stages. In this contribution we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models, which describe the collapse of spherical, inhomogeneous, non-rotating dust. Although there are many models of gravitational collapse, this particular class of models stands out for its simplicity and the fact that both black holes and naked singularity end states may be realized on the classical level, depending on the initial conditions. We will obtain the appropriate Wheeler-DeWitt equation and then solve it exactly, after regularization on a spatial lattice. The solutions describe Hawking radiation and provide an elegant microcanonical description of black hole entropy, but they raise other questions, most importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua N. Goldber

    Quantum Gravitational Contributions to the CMB Anisotropy Spectrum

    Full text link
    We derive the primordial power spectrum of density fluctuations in the framework of quantum cosmology. For this purpose we perform a Born-Oppenheimer approximation to the Wheeler-DeWitt equation for an inflationary universe with a scalar field. In this way we first recover the scale-invariant power spectrum that is found as an approximation in the simplest inflationary models. We then obtain quantum gravitational corrections to this spectrum and discuss whether they lead to measurable signatures in the CMB anisotropy spectrum. The non-observation so far of such corrections translates into an upper bound on the energy scale of inflation.Comment: 4 pages, v3: sign error in Eq. (5) and its consequences correcte

    Age-dependent decay in the landscape

    Full text link
    The picture of the "multiverse" arising in diverse cosmological scenarios involves transitions between metastable vacuum states. It was pointed out by Krauss and Dent that the transition rates decrease at very late times, leading to a dependence of the transition probability between vacua on the age of each vacuum region. I investigate the implications of this non-Markovian, age-dependent decay on the global structure of the spacetime in landscape scenarios. I show that the fractal dimension of the eternally inflating domain is precisely equal to 3, instead of being slightly below 3 in scenarios with purely Markovian, age-independent decay. I develop a complete description of a non-Markovian landscape in terms of a nonlocal master equation. Using this description I demonstrate by an explicit calculation that, under some technical assumptions about the landscape, the probabilistic predictions of our position in the landscape are essentially unchanged, regardless of the measure used to extract these predictions. I briefly discuss the physical plausibility of realizing non-Markovian vacuum decay in cosmology in view of the possible decoherence of the metastable quantum state.Comment: 10 pages, RevTeX4, 1 figure included. Clarification of approximation used, conclusions weakene
    corecore